DNA functionalization

Topics: Amine, Chemistry, Nanotechnology Pages: 52 (26589 words) Published: September 14, 2014
Downloaded from rsta.royalsocietypublishing.org on April 27, 2014

Surface modification, functionalization and
bioconjugation of colloidal inorganic
nanoparticles
R. A. Sperling and W. J. Parak
Phil. Trans. R. Soc. A 2010 368, doi: 10.1098/rsta.2009.0273, published 15 February 2010

References

This article cites 385 articles, 15 of which can be accessed free

Subject collections

Articles on similar topics can be found in the following
collections

http://rsta.royalsocietypublishing.org/content/368/1915/1333.ful l.html#ref-list-1

hydrology (37 articles)
nanotechnology (110 articles)

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

Downloaded from rsta.royalsocietypublishing.org on April 27, 2014

Phil. Trans. R. Soc. A (2010) 368, 1333–1383
doi:10.1098/rsta.2009.0273

REVIEW

Surface modification, functionalization
and bioconjugation of colloidal
inorganic nanoparticles
B Y R. A. S PERLING1, *

AND

W. J. P ARAK2

1 Institut

Català de Nanotecnologia, Campus Universitat Autònoma de
Barcelona, Bellaterra, Spain
2 Fachbereich Physik und Wissenschaftliches Zentrum für
Materialwissenschaften (WZMW ), Philipps Universität Marburg, Marburg, Germany

Inorganic colloidal nanoparticles are very small, nanoscale objects with inorganic cores that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y2 O3 ), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by appropriate functional molecules on the particle surface. This work aims to review different strategies of surface modification and functionalization of inorganic colloidal nanoparticles with a special focus on the material systems gold and semiconductor nanoparticles, such as CdSe/ZnS. However, the discussed strategies are often of general nature and apply in the same way to nanoparticles of other materials.

Keywords: inorganic chemistry; metal clusters; nanoparticles; colloids

1. Introduction
Inorganic colloidal nanoparticles are very small, nanoscale objects with an inorganic core that are dispersed in a solvent. Depending on the material they consist of, nanoparticles can possess a number of different properties such as high electron density and strong optical absorption (e.g. metal particles, *Author for correspondence (ralph.sperling.icn@uab.cat).

One contribution of 13 to a Theme Issue ‘Metal clusters and nanoparticles’.

1333

This journal is © 2010 The Royal Society

Downloaded from rsta.royalsocietypublishing.org on April 27, 2014

1334

R. A. Sperling and W. J. Parak

in particular Au), photoluminescence in the form of fluorescence (semiconductor quantum dots, e.g. CdSe or CdTe) or phosphorescence (doped oxide materials, e.g. Y2 O3 ), or magnetic moment (e.g. iron oxide or cobalt nanoparticles). Prerequisite for every possible application is the proper surface functionalization of such nanoparticles, which determines their interaction with the environment. These interactions ultimately affect the colloidal stability of the particles, and may yield to a controlled assembly or to the delivery of nanoparticles to a target, e.g. by...

References: Ackerson, C. J., Jadzinsky, P. D. & Kornberg, R. D. 2005 Thiolate ligands for synthesis of watersoluble gold clusters. J. Am. Chem. Soc. 127, 6550–6551. (doi:10.1021/ja046114i)
Akerman, M
targeting in vivo. Proc. Natl Acad. Sci. USA 99, 12 617–12 621. (doi:10.1073/pnas.152463399)
Aldana, J., Wang, Y
by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844–8850. (doi:10.1021/ja016424q)
Aldana, J., Lavelle, N., Wang, Y
ligands from cadmium chalcogenide nanocrystals. J. Am. Chem. Soc. 127, 2496–2504.
for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 45, 2204–2209. (doi:10.1002/
anie.200502481)
Aldaye, F. A. & Sleiman, H. F. 2007 Dynamic DNA templates for discrete gold nanoparticle
assemblies: control of geometry, modularity, write/erase and structural switching
Soc. 129, 4130–4131. (doi:10.1021/ja070017i)
Algar, W
(doi:10.1002/cphc.200600686)
Alivisatos, A
J. Phys. Chem. A 100, 13 226–13 239. (doi:10.1021/jp9535506)
Alivisatos, A
Schultz, P. G. 1996 Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611.
Dellepiane, G. 2008 Photopolymerization of diacetylene-capped gold nanoparticles. Phys. Chem.
Chem. Phys. 10, 2214–2220. (doi:10.1039/b717008d)
Al-Somali, A
chromatography for the analysis and separation of nanocrystalline gold. Anal. Chem. 76, 5903–
5910
Anderson, R. E. & Chan, W. C. W. 2008 Systematic investigation of preparing biocompatible,
single, and small ZnS-capped CdSe quantum dots with amphiphilic polymers
alkanethiols in the presence of a nonionic surfactant. Langmuir 18, 6059–6065. (doi:10.1021/
la025795x)
Phil. Trans. R. Soc. A (2010)
Downloaded from rsta.royalsocietypublishing.org on April 27, 2014
Aslan, K., Luhrs, C. C. & Pérez-Luna, V. H. 2004 Controlled and reversible aggregation of
biotinylated gold nanoparticles with Streptavidin
O. C. 2007 Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy,
and sensing of drug delivery based on bi-fluorescence resonance energy transfer
7, 3065–3070. (doi:10.1021/nl071546n)
Bakalova, R., Zhelev, Z., Aoki, I
(doi:10.1081/DIS-100107857)
Ballou, B., Lagerholm, B
Lloberas, J. & Puntes, V. 2009 Homogeneous conjugation of peptides onto gold nanoparticles
enhances macrophage response
Berret, J. F., Sehgal, A., Morvan, M., Sandre, O., Vacher, A. & Airiau, M. 2006 Stable
oxide nanoparticle clusters obtained by complexation
determined by magnetic sedimentation. Langmuir 23, 2993–2999. (doi:10.1021/la061958w)
Berry, C
Langmuir 22, 5385–5391. (doi:10.1021/la052710u)
Binder, W
update. Macromol. Rapid Commun. 29, 952–981. (doi:10.1002/marc.200800089)
Binder, W
imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782. (doi:10.1039/
b806051g)
Bowen-Katari, J. E., Colvin, V. L. & Alivisatos, A. P. 1994 X-ray photoelectron spectroscopy of
CdSe nanocrystals with applications to studies of the nanocrystal surface
lipases and gold nanoparticles. Bioconjugate Chem. 17, 1373–1375. (doi:10.1021/bc0601018)
Brinas, R
magnetic nanoparticles. Biotechnol. Prog. 19, 477–484. (doi:10.1021/bp0200853)
Bücking, W
Buining, P. A., Humbel, B. M., Philipse, A. P. & Verkleij, A. J. 1997 Preparation of functional
silane-stabilized gold colloids in the (sub)nanometer size range
dots. Langmuir 22, 3007–3013. (doi:10.1021/la051898e)
Phil
Continue Reading

Please join StudyMode to read the full document

You May Also Find These Documents Helpful

  • DNA Vaccination Essay
  • Dna Synopsis Essay
  • Essay about DNA Extraction
  • Essay on DNA and RNA
  • Structure of Dna Essay
  • Dna Extraction Essay
  • DNA and RNA Essay
  • Dna structure Essay

Become a StudyMode Member

Sign Up - It's Free
Ha Jung-Woo | All Services | (SC2016 Autumn) [Mizuwari Neko (Toyo)] Karada wa Osanaku Kokoro mo Osanai (Kantai Collection -KanColle-) [English] [Doujins com]